Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Exp Med ; 219(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35704026

ABSTRACT

The majority of mucopolysaccharidosis IIIC (MPS IIIC) patients have missense variants causing misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), which are potentially treatable with pharmacological chaperones. To test this approach, we generated a novel HgsnatP304L mouse model expressing misfolded HGSNAT Pro304Leu variant. HgsnatP304L mice present deficits in short-term and working/spatial memory 2-4 mo earlier than previously described constitutive knockout Hgsnat-Geo mice. HgsnatP304L mice also show augmented severity of neuroimmune response, synaptic deficits, and neuronal storage of misfolded proteins and gangliosides compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat-Geo neurons further reduced levels of synaptic proteins. Memory deficits and majority of brain pathology were rescued in mice receiving HGSNAT chaperone, glucosamine. Our data for the first time demonstrate dominant-negative effects of misfolded HGSNAT Pro304Leu variant and show that they are treatable by oral administration of glucosamine. This suggests that patients affected with mutations preventing normal folding of the enzyme can benefit from chaperone therapy.


Subject(s)
Mucopolysaccharidoses , Mucopolysaccharidosis III , Acetyltransferases , Animals , Glucosamine , Heparitin Sulfate , Humans , Mice , Mice, Knockout , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology
2.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34156977

ABSTRACT

The majority of patients affected with lysosomal storage disorders (LSD) exhibit neurological symptoms. For mucopolysaccharidosis type IIIC (MPSIIIC), the major burdens are progressive and severe neuropsychiatric problems and dementia, primarily thought to stem from neurodegeneration. Using the MPSIIIC mouse model, we studied whether clinical manifestations preceding massive neurodegeneration arise from synaptic dysfunction. Reduced levels or abnormal distribution of multiple synaptic proteins were revealed in cultured hippocampal and CA1 pyramidal MPSIIIC neurons. These defects were rescued by virus-mediated gene correction. Dendritic spines were reduced in pyramidal neurons of mouse models of MPSIIIC and other (Tay-Sachs, sialidosis) LSD as early as at P10. MPSIIIC neurons also presented alterations in frequency and amplitude of miniature excitatory and inhibitory postsynaptic currents, sparse synaptic vesicles, reduced postsynaptic densities, disorganized microtubule networks, and partially impaired axonal transport of synaptic proteins. Furthermore, postsynaptic densities were reduced in postmortem cortices of human MPS patients, suggesting that the pathology is a common hallmark for neurological LSD. Together, our results demonstrate that lysosomal storage defects cause early alterations in synaptic structure and abnormalities in neurotransmission originating from impaired synaptic vesicular transport, and they suggest that synaptic defects could be targeted to treat behavioral and cognitive defects in neurological LSD patients.


Subject(s)
Lysosomal Storage Diseases/metabolism , Mucopolysaccharidosis III , Pyramidal Cells , Secretory Vesicles/metabolism , Synaptic Transmission/physiology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cells, Cultured , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Disease Progression , Drug Discovery , Hippocampus/pathology , Mice , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/psychology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Protein Transport , Pyramidal Cells/metabolism , Pyramidal Cells/pathology
4.
J Clin Med ; 9(3)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106459

ABSTRACT

About two thirds of the patients affected with lysosomal storage diseases (LSD) experience neurological manifestations, such as developmental delay, seizures, or psychiatric problems. In order to develop efficient therapies, it is crucial to understand the neuropathophysiology underlying these symptoms. How exactly lysosomal storage affects biogenesis and function of neurons is still under investigation however recent research highlights a substantial role played by synaptic defects, such as alterations in synaptic spines, synaptic proteins, postsynaptic densities, and synaptic vesicles that might lead to functional impairments in synaptic transmission and neurodegeneration, finally culminating in massive neuronal death and manifestation of cognitive symptoms. Unveiling how the synaptic components are affected in neurological LSD will thus enable a better understanding of the complexity of disease progression as well as identify crucial targets of therapeutic relevance and optimal time windows for targeted intervention.

6.
Neurotherapeutics ; 16(4): 1149-1166, 2019 10.
Article in English | MEDLINE | ID: mdl-31342410

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder in which the neuromuscular junction progressively degenerates, leading to movement difficulties, paralysis, and eventually death. ALS is currently being treated by only two FDA-approved drugs with modest efficacy in slowing disease progression. Often, the translation of preclinical findings to bedside terminates prematurely as the evaluation of potential therapeutic compounds focuses on a single study or a single animal model. To circumscribe these issues, we screened 3,765 novel small molecule derivatives of pimozide, a recently identified repurposed neuroleptic for ALS, in Caenorhabditis elegans, confirmed the hits in zebrafish and validated the most active compounds in mouse genetic models. Out of the 27 small molecules identified from the high-throughput screen in worms, 4 were found to recover locomotor defects in C. elegans and genetic zebrafish models of ALS. TRVA242 was identified as the most potent compound as it significantly improved efficiency in rescuing locomotor, motorneuron, and neuromuscular junction synaptic deficits in a C. elegans TDP-43 model and in multiple zebrafish genetic (TDP-43, SOD1, and C9ORF72) models of ALS. The actions of TRVA242 were also conserved in a mammalian model as it also stabilized neuromuscular junction deficits in a mouse SOD1 model of ALS. Compounds such as TRVA242 therefore represent new potential therapeutics for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Disease Models, Animal , Neuromuscular Junction/genetics , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , DNA-Binding Proteins/administration & dosage , DNA-Binding Proteins/metabolism , Humans , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuromuscular Junction/drug effects , Neuromuscular Junction/metabolism , Organ Culture Techniques , Pimozide/administration & dosage , Pimozide/metabolism , Zebrafish
7.
J Neurophysiol ; 121(1): 285-297, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30461368

ABSTRACT

Almost 90% of amyotrophic lateral sclerosis (ALS) cases are characterized by the presence of aggregates of insoluble, misfolded cytoplasmic TAR DNA binding protein of 43 kDa (TDP-43). Distal axonopathy with impaired neuromuscular junctions (NMJs) before motor neuron degeneration or clinical onset of symptoms has been hypothesized as an early pathology in ALS. However, synaptic defects at the NMJ caused by TDP-43 mutations have not been characterized. In this study, we examined a previously reported zebrafish line expressing the tardbpY220X/Y220X variant, which results in an unstable and degraded protein. These tardbp-/- larvae, however, mature normally due to the upregulated expression of an alternative splice variant of the tardbp paralog tardbp-like, or tardbpl. We generated a mutant line with a CRISPR/Cas9-mediated 5-base pair deletion encompassing the ATG start codon of tardbpl and in-crossed these with tardbp-/- mutants to obtain tardbp-/- and tardbpl-/- double mutants, herein referred to as hom/hom. We subsequently characterized morphological, coiling, locomotor, synaptic, and NMJ structural abnormalities in the hom/hom mutants and in their genotypic controls. We observed that hom/hom mutants displayed gross morphological defects, early lethality, reduced locomotor function, aberrant quantal transmission, and perturbed synapse architecture at the NMJ. We further employed pharmacological manipulations in an effort to rescue phenotypic defects and observed that tardbp+/-; tardbpl-/- (herein referred to as het/hom) mutants, but not hom/hom mutants, were sensitive to chronic treatments of BAY K 8644, an L-type calcium channel agonist. This result highlights the importance of partial vs. complete loss of allelic functions of TDP-43. NEW & NOTEWORTHY This study highlights the importance of partial vs. complete loss of allelic functions of TDP-43 in a zebrafish loss of function model, thus making it an attractive tool for drug screening approaches.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Loss of Function Mutation , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Alleles , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Calcium Channel Agonists/pharmacology , Calcium Channels, L-Type/metabolism , Disease Models, Animal , Genotype , Motor Activity/drug effects , Motor Activity/physiology , Neuromuscular Junction/drug effects , Neuromuscular Junction/growth & development , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , Zebrafish
8.
Peptides ; 73: 43-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26296323

ABSTRACT

Neurotensin (NT) is an endogenous neuropeptide that modulates dopamine and glutamate neurotransmission in several limbic regions innervated by neurons located in the ventral tegmental area (VTA). While several studies showed that NT exerted a direct modulation on VTA dopamine neurons less is known about its role in the modulation of glutamatergic neurotransmission in this region. The present study was aimed at characterising the effects of NT on glutamate-mediated responses in different populations of VTA neurons. Using whole cell patch clamp recording technique in horizontal rat brain slices, we measured the amplitude of glutamatergic excitatory post-synaptic currents (EPSCs) evoked by electrical stimulation of VTA afferents before and after application of different concentrations of NT1-13 or its C-terminal fragment, NT8-13. Neurons were classified as either Ih(+) or Ih(-) based on the presence or absence of a hyperpolarisation activated cationic current (Ih). We found that NT1-13 and NT8-13 produced comparable concentration dependent increase in the amplitude of EPSCs in both Ih(+) and Ih(-) neurons. In Ih(+) neurons, the enhancement effect of NT8-13 was blocked by both antagonists, while in Ih(-) neurons it was blocked by the NTS1/NTS2 antagonist, SR142948A, but not the preferred NTS1 antagonist, SR48692. In as much as Ih(-) neurons are non-dopaminergic neurons and Ih(+) neurons represent both dopamine and non-dopamine neurons, we can conclude that NT enhances glutamatergic mediated responses in dopamine, and in a subset of non-dopamine, neurons by acting respectively on NTS1 and an NT receptor other than NTS1.


Subject(s)
Neurons/metabolism , Neurotensin/metabolism , Receptors, Neurotensin/metabolism , Synaptic Transmission/physiology , Ventral Tegmental Area/metabolism , Animals , Female , Male , Neurons/cytology , Neurotensin/antagonists & inhibitors , Rats , Rats, Long-Evans , Synaptic Transmission/drug effects , Ventral Tegmental Area/cytology
9.
Front Neurosci ; 9: 470, 2015.
Article in English | MEDLINE | ID: mdl-26733785

ABSTRACT

The present study was aimed at characterizing the mechanisms by which neurotensin (NT) is acting within the ventral midbrain to induce a psychostimulant-like effect. In a first experiment, we determine which subtype(s) of NT receptors is/are involved in the reward-inducing effect of ventral midbrain microinjection of NT using the conditioned place-preference (CPP) paradigm. In a second study, we used in vitro patch clamp recording technique to characterize the NT receptor subtype(s) involved in the modulation of glutamatergic neurotransmission (excitatory post-synaptic current, EPSC) in ventral tegmental neurons that expressed ([Formula: see text]), or do not express ([Formula: see text]), a hyperpolarization-activated cationic current. Behavioral studies were performed with adult male Long-Evans rats while electrophysiological recordings were obtained from brain slices of rat pups aged between 14 and 21 days. Results show that bilateral ventral midbrain microinjections of 1.5 and 3 nmol of D-Tyr[(11)]NT induced a CPP that was respectively attenuated or blocked by co-injection with 1.2 nmol of the NTS1/NTS2 antagonist, SR142948, and the preferred NTS1 antagonist, SR48692. In electrophysiological experiments, D-Tyr[(11)]NT (0.01-0.5 µM) attenuated glutamatergic EPSC in [Formula: see text] but enhanced it in [Formula: see text] neurons. The attenuation effect ([Formula: see text] neurons) was blocked by SR142948 (0.1 µM) while the enhancement effect ([Formula: see text] neurons) was blocked by both antagonists (0.1 µM). These findings suggest that (i) NT is acting on ventral midbrain NTS1 receptors to induce a rewarding effect and (ii) that this psychostimulant-like effect could be due to a direct action of NT on dopamine neurons and/or an enhancement of glutamatergic inputs to non-dopamine ([Formula: see text]) neurons.

10.
PLoS One ; 9(5): e86970, 2014.
Article in English | MEDLINE | ID: mdl-24784836

ABSTRACT

Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.


Subject(s)
Dopamine/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Presynaptic/metabolism , Animals , Animals, Newborn , Electric Stimulation , Patch-Clamp Techniques , Rats , Receptors, AMPA/metabolism , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...